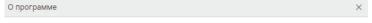
Система автоматизированного проектирования радиоэлектроники Delta Design

Руководство по эксплуатации

Содержание

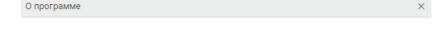

Введение 3		
1.1. Проверка работосп	особности системы 6	
1.2. Описание операци	й7	
1.2.1. Формирование баз	вы данных радиоэлектронных компонентов и	
поддержание ее в актуаль	ьном состоянии7	
1.2.2. Разработка схем эл	лектрических принципиальных9	
·	пирования аналоговых схем; анализ результатов 10	
• • • • • • • • • • • • • • • • • • • •	пирования цифровых схем; анализ результатов 11	
1.2.5. Разработка констр	укции печатных плат13	
1.2.6. Выпуск конструкто	рской документации (в соответствии с ГОСТ) 15	
1.2.7. Выпуск производст	гвенной документации, в том числе для	
автоматизированных прои	изводственных линий16	
1.2.8. Подготовка данны	х для составления перечня закупаемых изделий	
и материалов, необходим	ых для реализации проекта17	
2.1. Рабочее пространст	гво18	
2.1.1. Главное окно	18	
2.1.2. Рабочая область и	окна19	
2.1.3. Главное меню	20	
2.1.4. Панели инструмен	тов20	
2.1.5. Функциональные г	ıанели21	
2.1.6. Контекстное меню	21	
Перечень сокращений и	ı терминов22	
Заилюцение	23	

Введение

Настоящее Руководство предназначено для пользователей систем САПР радиоэлектроники Delta Design Standard и САПР радиоэлектроники Delta Design Professional и включает в себя сведения о назначении, области и условиях применения, принципов работы, порядке действий в случае возникновения аварийных сбоев.

САПР Delta Design версия Standard представляет собой систему автоматизированного проектирования радиоэлектронных устройств, в состав которой входят следующие модули:

- Модуль «Схемотехнический редактор».
- Модуль «Редактор топологии печатных плат».
- Модуль «Система подготовки данных для производства».
- Модуль «Система управления правилами проектирования».
- Модуль «Менеджер библиотек ЭРИ».
- Модуль построения реалистичных 3D моделей ЭРИ и печатных плат.
- Модуль подготовки конструкторской документации (ЕСКД).
- Модуль «Подсистема хранения данных (IPR Server)».


САПР радиоэлектроники Delta Design Standard 1.0.19480.4637+5cc2c28af0ec0773434ec8c94717ae7a2ac46fb9 ©2010-2024 Eremex Установленные модули: Схемотехнический редактор ©2024 Eremex Редактор топологии печатных плат ©2024 Eremex Система управления правилами проектирования ©2024 Eremex Система подготовки данных для производства ©2024 Eremex Модуль подготовки конструкторской документации (ЕСКД) ©2024 Eremex Модуль построения реалистичных 3D моделей ЭРИ и печатных плат ©2024 Eremex Менеджер библиотек ЭРИ ©2024 Eremex Ядро геометрического моделирования СЗD. 2023.1 ©2023 ООО "СЗД Лабс"

OK

Рис. 1. Справка о программе

САПР Delta Design версия Professional представляет собой более расширенную версию Delta Design Standard, в состав которой входят следующие модули:

- Модуль «Схемотехнический редактор».
- Модуль «Редактор топологии печатных плат».
- Модуль «Система аналогового моделирования».
- Модуль «Система цифрового моделирования».
- Модуль «Система подготовки данных для производства».
- Модуль «Автоматический топологический трассировщик».
- Модуль «Система управления правилами проектирования».
- Модуль «Менеджер библиотек ЭРИ».
- Модуль построения реалистичных 3D моделей ЭРИ и печатных плат.
- Модуль подготовки конструкторской документации (ЕСКД).
- Модуль «Подсистема хранения данных (IPR Server)».

САПР радиоэлектроники Delta Design Professional1.0.19480.4637+af793d11d17d3017698838ddeb50f73b3f3ad61e

©2010-2024 Eremex

Установленные модули:

Схемотехнический редактор ©2024 Eremex

Редактор топологии печатных плат @2024 Eremex

Система аналогового моделирования ©2024 Eremex

Система управления правилами проектирования ©2024 Eremex

Автоматический топологический трассировщик ©2024 Eremex

Система подготовки данных для производства ©2024 Eremex

Модуль подготовки конструкторской документации (ЕСКД) ©2024 Eremex

Модуль построения реалистичных 3D моделей ЭРИ и печатных плат ©2024 Eremex

Менеджер библиотек ЭРИ @2024 Eremex

Система цифрового моделирования ©2024 Eremex

Ядро геометрического моделирования СЗD. 2023.1 ©2023 ООО "СЗД Лабс"

ОК

Рис. 2. Справка о программе

Права на данный документ в полном объёме принадлежат ООО «ЭРЕМЕКС» и защищены законодательством Российской Федерации об авторском праве и международными договорами.

Использование данного документа (как полностью, так и в части) в какой-либо форме, такое как: воспроизведение, модификация (в том числе перевод на другой язык), распространение (в том числе в переводе), копирование (заимствование) в любой форме, передача форме третьим лицам, — возможны только с предварительного письменного разрешения ООО «ЭРЕМЕКС».

ЭРЕМЕКС оставляет за собой право изменить содержание данного документа в любое время без предварительного уведомления.

Данный документ предназначен для продвинутого пользователя ПК, знакомого с поведением и механизмами операционных систем Windows и Linux, уверенно владеющего инструментарием ОС.

1.1. Проверка работоспособности системы

Программное обеспечение работоспособно, если на экране монитора отобразилось главное окно программы без выдачи пользователю сообщений о сбое в работе.

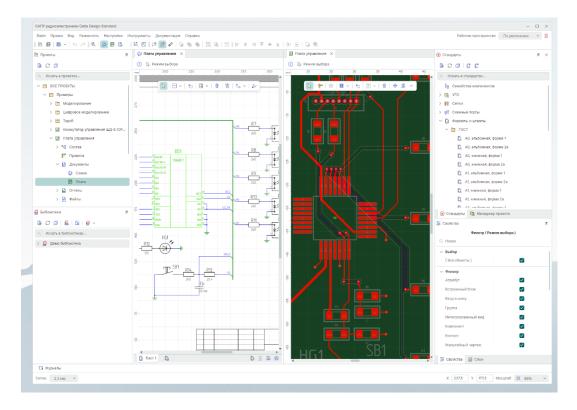


Рис. 3. Главное окно программы

1.2. Описание операций

1.2.1. Формирование базы данных радиоэлектронных компонентов и поддержание ее в актуальном состоянии

Ведение базы данных электронных компонентов для последующего использования в процессе проектирования. Менеджер содержит набор инструментов для создания базы ЭРИ, а также инструменты импорта библиотек ЭРИ.

1.2.1.1. Создание новой библиотеки данных

- 1. В панели «Библиотека» выбрать инструмент «Создать новую библиотеку».
- 2. Присвоить имя новой библиотеке.

1.2.1.2. Создание нового объекта библиотеки данных

Создание компонента:

- Выделить в панели «Библиотеки» → «Демо библиотека» → «Компоненты».
- 2. Выбрать в контекстном меню «Создать компонент».
- 3. В рабочей области окна графического редактора схемы УГО создать новый компонент с указанием параметров нового компонента.
- 4. Нажать в панели инструментов «Общие» «Сохранить».

Создание посадочного места:

- 1. Выделить в панели «Библиотеки» \rightarrow «Демо библиотека» \rightarrow «Посадочное место».
- 2. Выбрать в контекстном меню «Создать посадочное место».
- 3. В окне «Новое посадочное место» указать параметры нового посадочного места.
- 4. В окне «Новое посадочное место» нажать «Создать».
- 5. Нажать в панели инструментов «Общие» «Сохранить».

Создание контактной площадки:

Выделить в «Библиотеки» → «Демо библиотека» → «Контактная площадка».

- 2. Выбрать в контекстном меню «Редактор контактных площадок».
- 3. В панели управления формы редактора контактной площадки нажать инструмент «Создать».
- 4. В форме указать параметры новой контактной площадки.
- 5. Нажать в панели инструментов «Общие» \rightarrow «Сохранить».

1.2.1.3. Операции с существующим объектом библиотеки данных

Редактирование существующего библиотечного объекта:

- 1. Выделить объект библиотеки, который надо редактировать.
- 2. В контекстном меню выбрать «Открыть».
- 3. В рабочей области графического редактора выполнить редактирование.
- 4. Нажать в панели инструментов «Общие» → «Сохранить».

Удаление существующего библиотечного объекта:

- 1. Выделить объект библиотеки, который надо удалить.
- 2. В контекстном меню выбрать «Удалить» с подтверждением операции.

1.2.1.4. Операции с библиотеками данных

Обновление библиотеки данных:

- 1. Выделить в панели «Библиотеки» библиотеку, которую надо обновить.
- 2. В контекстном меню выбрать «Обновить из файла».
- 3. В окне проводника указать файл формата .ddl для обновления выделенной библиотеки и нажать «Далее».
- 4. В окне «Обновление библиотеки» выбрать вид обновления и нажать «Обновить».

Импорт отдельного файла библиотеки данных, созданного в системе:

- 1. Выбрать в панели управления «Библиотеки» инструмент «Импорт библиотеки Delta Design».
- 2. В окне мастера импорта библиотеки указать параметры и нажать «Далее».
- 3. При успешном завершении процесса импорта в окне мастера импорта библиотеки нажать «Готово».

1.2.1.5. Создание новых стандартных форм для библиотеки

Создание формы «УГО компонента»:

- 1. Выбрать в панели «Стандарты» пункт «УГО».
- 2. Выбрать из контекстного меню «Создать новое УГО».
- 3. В рабочей области графического редактора схемы УГО указать параметры и построить графическое отображение.
- 4. В панели инструмента «Общие» выбрать «Сохранить».

Создание формы «Типовые корпуса радиодеталей»:

- 1. Выбрать в панели «Стандарты» → «Корпуса» тип корпуса.
- 2. Выбрать из контекстного меню «Создать новый корпус».
- 3. В рабочей области формы создания корпуса указать параметры и номиналы.
- 4. В панели инструмента «Общие» выбрать «Сохранить».

1.2.2. Разработка схем электрических принципиальных

Автоматизация проектирования электрических схем. Редактор позволяет создавать принципиальные электрические схемы любой сложности, имеет встроенные возможности по выпуску текстовой конструкторской документации.

1.2.2.1. Создание новой электрической схемы

- 1. В главном меню выбрать «Файл» \rightarrow «Создать» \rightarrow «Проект платы».
- 2. В окне «Создать элемент» в поле «Название» указать название проекта платы и нажать «Создать»;
- 3. Заполнить поля окна «Создание проекта» и нажать «Создать».

1.2.2.2. Размещение библиотечных компонентов на рабочем поле электрической схемы

1. В окне «Библиотеки» выделить любой библиотечный компонент.

2. В контекстном меню выбрать пункт «Разместить на схеме» и разместить выбранный компонент на свободной области графического редактора электрической схемы.

1.2.2.3. Операции с графическими объектами на электрической схеме

Редактирование свойств объекта на электрической схеме:

- 1. На электрической схеме выделить компонент.
- 2. В окне «Свойства» редактировать значение в поле параметра.

Перемещение объекта на электрической схеме:

- 1. На электрической схеме выделить объект.
- 2. Методом Drag&Drop изменить расположение объекта.

Удаление объекта на электрической схеме:

- 1. На электрической схеме выделить объект.
- 2. В контекстном меню выбрать пункт «Удалить».

1.2.2.4. Размещение цепей на электрической схеме

1. Выбрать в главном меню «Разместить» → «Цепь».

1.2.2.5. Проверка схемы, на завершенность цепей, уникальность наименований объектов схемы

1. Выбрать в главном меню «Инструменты» \rightarrow «Проверка схемы (ERC)».

1.2.3. Проведение моделирования аналоговых схем; анализ результатов моделирования

Современный высокоэффективный пакет схемотехнического моделирования радиоэлектронных схем. Позволяет проводить полнофункциональное SPICE-моделирование, а также исследование устойчивости схемы при изменении различных входных параметров.

1.2.3.1. Создание нового проекта аналогового моделирования

- Выбрать в главном меню «Файл» → «Создать» → «Проект моделирования».
- 2. В окне «Создание элемента» выбрать расположение проекта, указать название проекта и нажать «Создать».
- 3. В окне «Создать новый проект моделирования» заполнить необходимые поля и нажать «Создать».

1.2.3.2. Создание нового элемента библиотеки SPICE-моделей

- 1. Открыть в графическом редакторе схемы выбранный компонент из библиотеки.
- 2. Перейти на вкладку «Моделирование» и нажать «Добавить SPICEмодель».
- 3. Заполнить поля формы.
- 4. Сопоставить контакты на вкладке «Контакты» в столбце «Узел в модели» в строке каждого контакта нажать пиктограмму раскрытия окна «Сопоставить контакт».
- 5. В панели инструмента «Общие» выбрать «Сохранить».

1.2.3.3. Способы анализа схемы

- 1. Выбрать в главном меню «SimOne» \rightarrow «Новое моделирование» \rightarrow способ анализа электрической схемы.
- 2. Заполнить необходимыми параметрами форму.
- 3. Нажать «Запустить».

1.2.4. Проведение моделирования цифровых схем; анализ результатов моделирования

Одновременная отладка моделей электронной аппаратуры со встраиваемым программным обеспечением в рамках единой интегрированной системы моделирования. Поддержка HDL-языков VHDL / Verilog / SystemVerilog / VerilogAMS.

1.2.4.1. Создание нового проекта цифрового моделирования

- Выбрать в главном меню «Файл» → «Создать» → «Проект цифрового проектирования».
- 2. В окне «Создание элемента» выбрать расположение проекта, указать название проекта и нажать «Создать».
- 3. В окне «Создать новый проект цифрового проектирования» заполнить необходимые поля и нажать «Создать».

1.2.4.2. Создание новой цифровой модели устройства

- 1. Открыть в графическом редакторе схемы выбранный компонент из библиотеки.
- 2. Перейти на вкладку «HDL модель» и нажать «Добавить HDL модель».
- 3. Выбрать язык генерации и нажать «Генерировать».
- 4. При необходимости добавить код.
- 5. В панели инструмента «Общие» выбрать «Сохранить».

1.2.4.3. Операции с цифровой моделью

Создание цифровой модели:

- 1. Выделить проект цифрового проектирования.
- 2. Из контекстного меню выбрать «Добавить HDL-проект».
- 3. Выделить HDL-проект и из контекстного меню выбрать «Создать файл» с указанием языка программирования и названием создаваемого файла.
- 4. 4. Открыть созданный файл в текстовом редакторе.
- 5. 5. В окне текстового редактора добавить код.
- 6. 6. В панели инструмента «Общие» выбрать «Сохранить».

Редактирование кода цифровой модели:

- 1. Выделить проект цифрового проектирования.
- 2. Выделить HDL-проект и выбрать файл на необходимом языке программирования.
- 3. Открыть файл в текстовом редакторе.
- 4. В окне текстового редактора изменить код.
- 5. В панели инструмента «Общие» выбрать «Сохранить».

1.2.4.4. Отображение результата симуляции по совместимости аппаратной части и программной части устройства

- 1. Выделить проект цифрового проектирования.
- 2. Из контекстного меню выбрать «Добавить HDL-проект».
- 3. Выделить HDL-проект и из контекстного меню выбрать «Создать файл» с указанием языка программирования и названием создаваемого файла.
- 4. Открыть созданный файл в текстовом редакторе.
- 5. В окне текстового редактора добавить код.
- 6. В панели инструмента «Общие» выбрать «Сохранить».
- 7. В панели инструментов «HDL моделирование» выбрать инструмент «Собрать проект».
- 8. В иерархии текущего HDL-проект выделить раздел «Осциллографы».
- 9. Из контекстного меню выбрать «Добавить OSC».
- 10. Открыть в рабочей области добавленный осциллограф.
- 11. В панели управления осциллографом выбрать инструмент «Выбрать OSC данные».
- 12. В окне «Данные осциллографа» выбрать необходимые данные и нажать «ОК».
- 13. В панели инструментов «HDL моделирование» выбрать инструмент «Собрать проект и запустить симуляцию».
- 14. В окне «Выбор точки входа» выбрать необходимую точку входа и нажать «ОК».

1.2.5. Разработка конструкции печатных плат

Набор инструментов для проектирования печатных плат и экспорта данных, необходимых для производства проектируемого изделия. Позволяет проводить трассировку в полностью ручном и интерактивном режимах, а также инструменты для разработки плат повышенной сложности с использованием автоматических процедур.

1.2.5.1. Создание корпуса печатной платы

1. В рабочей области графического редактора печатных плат «Тест_РСВ» в поле «Слой» установить текущим слой «Board_Outline».

2. Выбрать из главного меню «Инструменты» → «Граница платы» и задать границу платы.

1.2.5.2. Размещение компонентов и графических объектов на печатной плате

 Из окна «Менеджер проекты» → «Компоненты» → «Используемые компоненты» разместить методом Drag&Drop на произвольное место внутри границы корпуса платы все компоненты электрической схемы.

1.2.5.3. Размещение трассировки в режиме РСВ

- 1. На встроенной панели инструментов активировать режим «RightPCB».
- С помощью инструмента из главного меню «Разместить» → «Трек» соединить все контактные площадки компонентов, согласно предрасположенным линиям связи.
- 3. В панели инструментов «Общие» нажать «Сохранить».

1.2.5.4. Автоматическая трассировка в режиме TopoR

- 1. На встроенной панели инструментов активировать режим «TopoR».
- 2. Выбрать из главного меню «ТороR» \rightarrow «Автотрассировка».
- 3. В окне «Автоматическая трассировка» при необходимости выбрать параметры и нажать «Запустить».
- 4. После сформирования нескольких вариантов трассировки в окне «Автоматическая трассировка» нажать «Остановить»;
- 5. Выделить любой вариант трассировки и нажать «Открыть в редакторе».

1.2.5.5. Проверка топологии печатной платы на соответствия правил, указанных в системе управления правилами проектирования печатной платы

- 1. Открыть в редакторе печатных плат выбранную плату проект платы.
- 2. Выбрать в главном меню «Инструменты» \rightarrow «Проверка платы (DRC)».

1.2.6. Выпуск конструкторской документации (в соответствии с ГОСТ)

Полуавтоматическое оформление документов по ГОСТ. Инструменты для создания чертежей. Выпуск КД на проектируемую печатную плату.

Создание Спецификации:

- 1. Выбрать проект.
- 2. Открыть в редакторе печатную плату выбранного проекта.
- В главном меню выбрать «Документация» → «Новый отчет» → «Спецификация».

Подготовка к печати Спецификации:

- 1. В окне «Спецификация» перейти на вкладку «Листы».
- 2. Выбрать в меню окна «Спецификация» инструмент «Экспортировать в PDF».
- 3. В окне «Экспорт в PDF» указать требуемые значения и нажать «Конвертировать в PDF».

Создание Чертежа:

- 1. Выбрать проект.
- 2. Открыть в редакторе печатную плату выбранного проекта.
- 3. В главном меню выбрать «Документация» → «Создать конструкторскую документацию».
- 4. В форме «Мастер создания конструкторской документации» указать параметры и нажать «Далее».
- 5. По завершению процесса подготовки к созданию Чертежа нажать «Готово».
- 6. В иерархии проекта в разделе «Документы» отображаются файлы с чертежами.

Подготовка к печати Чертежа:

- 1. Выделить в иерархии проекта в разделе «Документы» чертеж.
- 2. Из контекстного меню выбрать «Экспорт» \rightarrow «PDF».
- 3. В окне «Экспорт в PDF» указать требуемые значения и нажать «Конвертировать в PDF».

1.2.7. Выпуск производственной документации, в том числе для автоматизированных производственных линий

Выпуск производственных файлов. Просмотр и редактирование производственных файлов Gerber / RS 274X / Excellon и т.п.

Создание файлов производства форматов Gerber, Excellon, IPC-D-356A:

- 1. В окне «Проекты» выделить проект.
- 2. Выбрать из контекстного меню «Экспорт» → «Файлы производства».
- 3. В окне «Создание файлов производства» → «Шаги экспорта» → «Начальная настройка» → «Экспортировать» отметить флагом чек боксы требуемых форматов и нажать «Далее».
- 4. В окне «Создание файлов производства» → «Шаги экспорта» → «Настройка экспорта файлов производства» → «Выбор слоев производства» отметить флагом чек бокс требуемых слоев и нажать «Далее».
- 5. В окне «Создание файлов производства» → «Шаги экспорта» → «Настройка экспорта файлов производства» → «Параметры выгрузки» указать соответствующие значения и нажать «Далее».
- 6. В окне «Создание файлов производства» → «Шаги экспорта» → «Настройка экспорта файлов производства» → «Разместить на слоях шелкографии» отметить флагом чек боксы требуемые объекты и нажать «Далее».
- В окне «Создание файлов производства» → «Шаги экспорта» → «Настройка экспорта файлов сверловки» → «Выбор файлов сверловки» при необходимости отметить флагом чек бокс и нажать «Далее».
- 8. В окне «Создание файлов производства» → «Шаги экспорта» → «Настройка экспорта файлов сверловки» → «Параметры выгрузки» указать требуемые значения и нажать «Далее».
- 9. В окне «Создание файлов производства» → «Шаги экспорта» → «Настройка экспорта файлов электроконтроля» → «Параметры выгрузки» указать требуемые значения и нажать «Далее».
- 10. В окне «Создание файлов производства» → «Шаги экспорта» → «Настройки сохранения» → «Параметры сохранения» указать требуемые значения и нажать «Далее».

11. По завершению процесса подготовки для создания файлов производства нажать «Готово».

1.2.8. Подготовка данных для составления перечня закупаемых изделий и материалов, необходимых для реализации проекта

Создание Ведомости покупных изделий:

- 1. Выбрать проект.
- 2. Открыть в редакторе электрическую схему или печатную плату выбранного проекта.
- 3. В главном меню выбрать «Документация» \rightarrow «Новый отчет» \rightarrow «Ведомость покупных изделий».

Подготовка к печати Ведомости покупных изделий:

- 1. В окне «Ведомость покупных изделий» перейти на вкладку «Листы».
- 2. Выбрать в меню окна «Ведомость покупных изделий» инструмент «Экспортировать в PDF».
- 3. В окне «Экспорт в PDF» указать требуемые значения и нажать «Конвертировать в PDF».

2.1. Рабочее пространство

В системе реализован многооконный графический интерфейс, что позволяет пользователям гибко управлять отображением множества проектных документов

Графический интерфейс включает следующие основные элементы:

- Главное окно;
- Рабочая область и окна;
- Главное меню;
- Панели инструментов;
- Функциональные панели;
- Контекстное меню.

2.1.1. Главное окно

Работа с проектными данными осуществляется в главном окне системы.

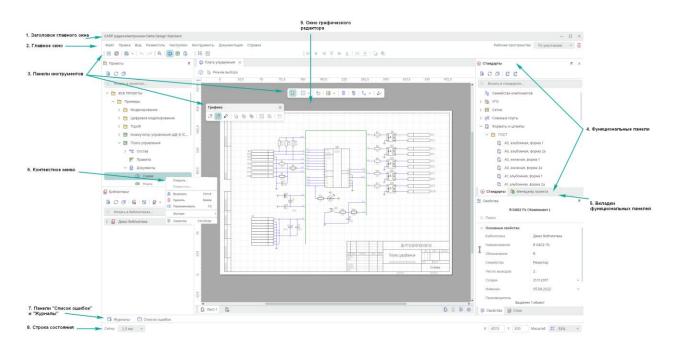


Рис. 4. Рабочее пространство

Ниже представлен перечень основных элементов интерфейса:

1. Заголовок главного окна отображает название и версию, а также содержит кнопки управления главным окном.

- 2. Главное меню содержит все возможные операции, которые доступны в системе. Главное меню динамически перестраивается в зависимости от активного редактора.
- 3. Панели инструментов содержат в себе наборы кнопок для быстрого вызова инструментов. Кнопки на панелях инструментов становятся доступны в зависимости от активного окна редактора.
- 4. Функциональные панели, за исключением панели «Проекты», являются контекстно-зависимыми и отображают информацию о проекте производства на основе активного окна редактора. Панель «Проекты» отображает в структурированном виде информацию из базы данных системы.
- 5. Вкладки панелей обеспечивают переключение между функциональными панелями, также посредством вкладок доступно перемещение панелей.
- 6. Контекстное меню обеспечивает быстрый доступ к операциям над выбранным объектом: элементом в дереве, в списке, в графическом редакторе и т.п. Состав меню зависит от объекта, для которого оно вызывается.
- 7. Панели «Список ошибок» и «Журналы» отображают сообщения, при выполнении некоторых операций в активном редакторе.
- 8. Строка состояния отображает информацию о текущем значении шага сетки, активном слое, координатах курсора и масштабе.
- 9. Окно графического редактора это окно активного редактора, которое по умолчанию открывается в рабочей области главного окна. Рабочая область отображает также заголовки других открытых редакторов и обеспечивает переход между ними.

2.1.2. Рабочая область и окна

Функциональные панели и окна документов можно откреплять от главного окна и перемещать как по главному окну, так и, в частности, на второй монитор. Окна документов и функциональные панели можно закреплять и располагать в разных вариациях при помощи навигационных кнопок. Также вышеуказанные окна и панели можно группировать, объединяя их в контейнер.

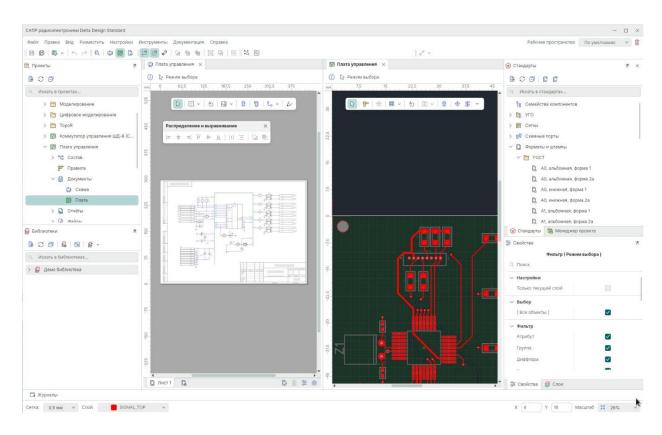


Рис. 5. Многооконный интерфейс

2.1.3. Главное меню

Главное меню состоит из разделов, в рамках которых пункты меню сгруппированы по типу операций с различными проектными данными. Главное меню является контекстно-зависимым. Тип активного в данный момент документа предопределяет доступность пунктов главного меню.

В системе предусмотрена возможность сохранения пользовательской настройки интерфейса главного окна.

Для того чтобы сохранить и в дальнейшем снова воспользоваться текущим видом настроенного интерфейса главного окна, необходимо в главном меню в пункте «Рабочее пространство» в выпадающем списке выбрать «Сохранить как...», предварительно настроив интерфейс главного окна (панели инструментов, расположение функциональных панелей и пр.).

2.1.4. Панели инструментов

Инструменты можно вызвать из главного меню, но для более быстрого доступа к инструментам они сгруппированы в отдельные панели инструментов.

Панель инструментов можно перемещать как в рабочей области главного окна, так за пределы рабочей области главного окна.

2.1.5. Функциональные панели

В системе имеются группы функциональных панелей, предназначенные для отображения и управления проектными данными.

Все функциональные панели отображаются при первом запуске системы слева и справа от рабочей области. Если какая-либо функциональная панель была скрыта пользователем, ее можно включить в пункте «Вид» главного меню.

2.1.6. Контекстное меню

Контекстное меню обеспечивает быстрый доступ к операциям над выбранным объектом: элементом в дереве, в списке, в графическом редакторе и т.п. Состав меню зависит от объекта, для которого оно вызывается.

Вызов контекстного меню в редакторах осуществляется нажатием правой клавиши мыши.

Перечень сокращений и терминов

Сокращение	Расшифровка
имс	Интегральная микросхема
ос	Операционная система
пк	Персональный компьютер
плис	Программируемые логические интегральные схемы
пми	Программа и методика испытаний
РЭ	Руководство по эксплуатации
САПР	Система автоматизированного проектирования
Т3	Техническое задание
УГО	Условно-графическое обозначение
ЧТ3	Частное техническое задание
HDL	Hardware Description Language
RTL	Register Transfer Level, уровень межрегистровых передач
IEEE	Международная некоммерческая ассоциация специалистов в области техники
SSD	Компьютерное энергонезависимое немеханическое запоминающее устройство на основе микросхем памяти, альтернатива HDD

Заключение

Система Delta Design — это обобщение опыта в области автоматизации проектирования, а также разработка оригинальных моделей и алгоритмов на основе нетрадиционных подходов к решению сложных задач.

Мы благодарим Вас за интерес, проявленный к **CAПР радиоэлектроники Delta Design Standard** и **CAПР радиоэлектроники Delta Design Professional**,
и надеемся на долговременное и плодотворное сотрудничество.